課程目錄:Introduction to R with Time Series Analysis培訓
4401 人關注
(78637/99817)
課程大綱:

        Introduction to R with Time Series Analysis培訓

 

 

 

Introduction and preliminaries
Making R more friendly, R and available GUIs
Rstudio
Related software and documentation
R and statistics
Using R interactively
An introductory session
Getting help with functions and features
R commands, case sensitivity, etc.
Recall and correction of previous commands
Executing commands from or diverting output to a file
Data permanency and removing objects
Simple manipulations; numbers and vectors
Vectors and assignment
Vector arithmetic
Generating regular sequences
Logical vectors
Missing values
Character vectors
Index vectors; selecting and modifying subsets of a data set
Other types of objects
Objects, their modes and attributes
Intrinsic attributes: mode and length
Changing the length of an object
Getting and setting attributes
The class of an object
Arrays and matrices
Arrays
Array indexing. Subsections of an array
Index matrices
The array() function
The outer product of two arrays
Generalized transpose of an array
Matrix facilities
Matrix multiplication
Linear equations and inversion
Eigenvalues and eigenvectors
Singular value decomposition and determinants
Least squares fitting and the QR decomposition
Forming partitioned matrices, cbind() and rbind()
The concatenation function, (), with arrays
Frequency tables from factors
Lists and data frames
Lists
Constructing and modifying lists
Concatenating lists
Data frames
Making data frames
attach() and detach()
Working with data frames
Attaching arbitrary lists
Managing the search path
Data manipulation
Selecting, subsetting observations and variables
Filtering, grouping
Recoding, transformations
Aggregation, combining data sets
Character manipulation, stringr package
Reading data
Txt files
CSV files
XLS, XLSX files
SPSS, SAS, Stata,… and other formats data
Exporting data to txt, csv and other formats
Accessing data from databases using SQL language
Probability distributions
R as a set of statistical tables
Examining the distribution of a set of data
One- and two-sample tests
Grouping, loops and conditional execution
Grouped expressions
Control statements
Conditional execution: if statements
Repetitive execution: for loops, repeat and while
Writing your own functions
Simple examples
Defining new binary operators
Named arguments and defaults
The '...' argument
Assignments within functions
More advanced examples
Efficiency factors in block designs
Dropping all names in a printed array
Recursive numerical integration
Scope
Customizing the environment
Classes, generic functions and object orientation
Graphical procedures
High-level plotting commands
The plot() function
Displaying multivariate data
Display graphics
Arguments to high-level plotting functions
Basic visualisation graphs
Multivariate relations with lattice and ggplot package
Using graphics parameters
Graphics parameters list
Time series Forecasting
Seasonal adjustment
Moving average
Exponential smoothing
Extrapolation
Linear prediction
Trend estimation
Stationarity and ARIMA modelling
Econometric methods (casual methods)
Regression analysis
Multiple linear regression
Multiple non-linear regression
Regression validation
Forecasting from regression


主站蜘蛛池模板: 日韩人妻精品一区二区三区视频| 色播在线观看免费| 国产成人综合久久综合| 狠狠躁夜夜躁人人爽天天不卡软件| 国产精品三级在线观看无码| 精品国产三级a∨在线欧美| 亚洲天堂第一区| 国产色a在线观看| 欧美蜜桃臀在线观看一区| 99r在线播放| 大妹子影视剧在线观看免费| j8又粗又大又长又爽又硬男男| 四虎成人精品免费影院 | 另类国产女王视频区| 欧美日韩国产精品自在自线| 久久久综合香蕉尹人综合网| 在线看片你懂的| 欧美视频www| 伊人色综合久久天天人守人婷| 亚洲av永久无码精品古装片| 国产欧美日韩中文久久| 日本护士xxxx爽爽爽| 美妇岳的疯狂迎合| 久草免费在线观看视频| 国产亚洲欧美在在线人成| 欧美成视频在线观看| 麻豆国产精品有码在线观看| 什么网站可以看毛片| 国产精品福利一区二区久久| 特级黄色毛片在放| www一区二区| 中文在线视频观看| 亚洲欧美日韩国产精品一区| 国产精品国产三级国产AV′| 欧美精品dorcelclub全集31| 7777精品伊人久久久大香线蕉 | 激性欧美激情在线aa| 一本色道久久88综合日韩精品 | 日本大乳高潮视频在线观看| 老司机福利在线播放| 97色伦综合在线欧美视频|