課程目錄:Machine Learning and Deep Learning培訓
4401 人關注
(78637/99817)
課程大綱:

         Machine Learning and Deep Learning培訓

 

 

 

Machine learning
Introduction to Machine Learning

Applications of machine learning
Supervised Versus Unsupervised Learning
Machine Learning Algorithms
Regression
Classification
Clustering
Recommender System
Anomaly Detection
Reinforcement Learning
Regression

Simple & Multiple Regression
Least Square Method
Estimating the Coefficients
Assessing the Accuracy of the Coefficient Estimates
Assessing the Accuracy of the Model
Post Estimation Analysis
Other Considerations in the Regression Models
Qualitative Predictors
Extensions of the Linear Models
Potential Problems
Bias-variance trade off [under-fitting/over-fitting] for regression models
Resampling Methods

Cross-Validation
The Validation Set Approach
Leave-One-Out Cross-Validation
k-Fold Cross-Validation
Bias-Variance Trade-Off for k-Fold
The Bootstrap
Model Selection and Regularization

Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
Selecting the Tuning Parameter
Dimension Reduction Methods
Principal Components Regression
Partial Least Squares
Classification

Logistic Regression

The Logistic Model cost function

Estimating the Coefficients

Making Predictions

Odds Ratio

Performance Evaluation Matrices

[Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]

Multiple Logistic Regression

Logistic Regression for >2 Response Classes

Regularized Logistic Regression

Linear Discriminant Analysis

Using Bayes’ Theorem for Classification

Linear Discriminant Analysis for p=1

Linear Discriminant Analysis for p >1

Quadratic Discriminant Analysis

K-Nearest Neighbors

Classification with Non-linear Decision Boundaries

Support Vector Machines

Optimization Objective

The Maximal Margin Classifier

Kernels

One-Versus-One Classification

One-Versus-All Classification

Comparison of Classification Methods

Introduction to Deep Learning
ANN Structure

Biological neurons and artificial neurons

Non-linear Hypothesis

Model Representation

Examples & Intuitions

Transfer Function/ Activation Functions

Typical classes of network architectures

Feed forward ANN.

Structures of Multi-layer feed forward networks

Back propagation algorithm

Back propagation - training and convergence

Functional approximation with back propagation

Practical and design issues of back propagation learning

Deep Learning

Artificial Intelligence & Deep Learning

Softmax Regression

Self-Taught Learning

Deep Networks

Demos and Applications

Lab:
Getting Started with R

Introduction to R

Basic Commands & Libraries

Data Manipulation

Importing & Exporting data

Graphical and Numerical Summaries

Writing functions

Regression

Simple & Multiple Linear Regression

Interaction Terms

Non-linear Transformations

Dummy variable regression

Cross-Validation and the Bootstrap

Subset selection methods

Penalization [Ridge, Lasso, Elastic Net]

Classification

Logistic Regression, LDA, QDA, and KNN,

Resampling & Regularization

Support Vector Machine

Resampling & Regularization

Note:

For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.

Analysis of different data sets will be performed using R

主站蜘蛛池模板: 欧美日韩你懂的| 欧美日韩亚洲高清不卡一区二区三区| 精品一区二区三区中文| 师尊要被cao坏了by谦野| 国产99久久亚洲综合精品| 中文无码字幕中文有码字幕| 色视频色露露永久免费观看| 日本三人交xxx69视频| 国产一区二区三区四| 中文字幕乱码人妻综合二区三区 | 亚洲欧美成人综合| 88国产精品视频一区二区三区 | 性感美女视频免费网站午夜| 午夜精品在线视频| yellow动漫免费高清无删减| 福利一区福利二区| 天堂va视频一区二区| 亚洲熟妇av一区二区三区下载| 91全国探花精品正在播放| 欧美xxxx狂喷水喷水| 国产男女爽爽爽爽爽免费视频| 九色综合狠狠综合久久| 边摸边脱吃奶边高潮视频免费 | 国产激情一区二区三区四区| 久久综合精品国产二区无码| 香蕉精品视频在线观看| 无码av中文一区二区三区桃花岛| 午夜一级免费视频| Aⅴ精品无码无卡在线观看| 欧美猛男做受视频| 国产欧美一区二区三区观看| 久久伊人中文字幕| 美女范冰冰hdxxxx| 大地资源在线资源官网| 亚洲免费视频播放| 黑人解禁濑亚美莉| 成人中文精品3d动漫在线| 亚洲黄色网址在线观看| xxxxx日韩| 无码人妻丰满熟妇区五十路百度| 免费的黄色影片|