課程目錄:Machine Learning and Deep Learning培訓
4401 人關注
(78637/99817)
課程大綱:

         Machine Learning and Deep Learning培訓

 

 

 

Machine learning
Introduction to Machine Learning

Applications of machine learning
Supervised Versus Unsupervised Learning
Machine Learning Algorithms
Regression
Classification
Clustering
Recommender System
Anomaly Detection
Reinforcement Learning
Regression

Simple & Multiple Regression
Least Square Method
Estimating the Coefficients
Assessing the Accuracy of the Coefficient Estimates
Assessing the Accuracy of the Model
Post Estimation Analysis
Other Considerations in the Regression Models
Qualitative Predictors
Extensions of the Linear Models
Potential Problems
Bias-variance trade off [under-fitting/over-fitting] for regression models
Resampling Methods

Cross-Validation
The Validation Set Approach
Leave-One-Out Cross-Validation
k-Fold Cross-Validation
Bias-Variance Trade-Off for k-Fold
The Bootstrap
Model Selection and Regularization

Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
Selecting the Tuning Parameter
Dimension Reduction Methods
Principal Components Regression
Partial Least Squares
Classification

Logistic Regression

The Logistic Model cost function

Estimating the Coefficients

Making Predictions

Odds Ratio

Performance Evaluation Matrices

[Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]

Multiple Logistic Regression

Logistic Regression for >2 Response Classes

Regularized Logistic Regression

Linear Discriminant Analysis

Using Bayes’ Theorem for Classification

Linear Discriminant Analysis for p=1

Linear Discriminant Analysis for p >1

Quadratic Discriminant Analysis

K-Nearest Neighbors

Classification with Non-linear Decision Boundaries

Support Vector Machines

Optimization Objective

The Maximal Margin Classifier

Kernels

One-Versus-One Classification

One-Versus-All Classification

Comparison of Classification Methods

Introduction to Deep Learning
ANN Structure

Biological neurons and artificial neurons

Non-linear Hypothesis

Model Representation

Examples & Intuitions

Transfer Function/ Activation Functions

Typical classes of network architectures

Feed forward ANN.

Structures of Multi-layer feed forward networks

Back propagation algorithm

Back propagation - training and convergence

Functional approximation with back propagation

Practical and design issues of back propagation learning

Deep Learning

Artificial Intelligence & Deep Learning

Softmax Regression

Self-Taught Learning

Deep Networks

Demos and Applications

Lab:
Getting Started with R

Introduction to R

Basic Commands & Libraries

Data Manipulation

Importing & Exporting data

Graphical and Numerical Summaries

Writing functions

Regression

Simple & Multiple Linear Regression

Interaction Terms

Non-linear Transformations

Dummy variable regression

Cross-Validation and the Bootstrap

Subset selection methods

Penalization [Ridge, Lasso, Elastic Net]

Classification

Logistic Regression, LDA, QDA, and KNN,

Resampling & Regularization

Support Vector Machine

Resampling & Regularization

Note:

For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.

Analysis of different data sets will be performed using R

主站蜘蛛池模板: 国产成人无码区免费A∨视频网站| 欧美在线观看免费一区视频| 妖神记1000多章哪里看| 免费看欧美成人性色生活片| china同性基友gay勾外卖| 粗喘撞吟np文古代| 国内精品久久久久影院蜜芽| 亚洲加勒比在线| 麻豆aⅴ精品无码一区二区| 新婚娇妻倩如帮助三老头| 免费黄色网址网站| 5g996未满十八| 日韩人妻无码一区二区三区综合部 | 粉嫩小泬无遮挡久久久久久| 女人18毛片a级毛片| 放荡的女人在线观看| 欧美高清在线精品一区| 欧美精品九九99久久在免费线| 国产精品久久久久久久久久免费| 乱人伦人妻中文字幕| 菠萝蜜视频在线观看入口| 奇米影视中文字幕| 亚洲乱码中文字幕综合| 色www免费视频| 大炕上农村岳的乱| 亚州免费一级毛片| 精品视频一区二区三三区四区| 夜夜爽夜夜叫夜夜高潮漏水| 亚洲av午夜成人片精品网站| 美景之屋4在线未删减免费| 在地铁车上弄到高c了| 亚洲AV之男人的天堂| 精品久久久久国产免费| 国产精品久久久久久久久齐齐| 中文字幕日产每天更新40| 波多野结衣中文一区二区免费| 国产在线观看精品香蕉v区| 一本大道一卡2卡三卡4卡麻豆| 欧美性猛交xxxx黑人| 国产69精品久久久久9999| 99久久无色码中文字幕|