課程目錄:Machine Learning and Deep Learning培訓
4401 人關注
(78637/99817)
課程大綱:

         Machine Learning and Deep Learning培訓

 

 

 

Machine learning
Introduction to Machine Learning

Applications of machine learning
Supervised Versus Unsupervised Learning
Machine Learning Algorithms
Regression
Classification
Clustering
Recommender System
Anomaly Detection
Reinforcement Learning
Regression

Simple & Multiple Regression
Least Square Method
Estimating the Coefficients
Assessing the Accuracy of the Coefficient Estimates
Assessing the Accuracy of the Model
Post Estimation Analysis
Other Considerations in the Regression Models
Qualitative Predictors
Extensions of the Linear Models
Potential Problems
Bias-variance trade off [under-fitting/over-fitting] for regression models
Resampling Methods

Cross-Validation
The Validation Set Approach
Leave-One-Out Cross-Validation
k-Fold Cross-Validation
Bias-Variance Trade-Off for k-Fold
The Bootstrap
Model Selection and Regularization

Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
Selecting the Tuning Parameter
Dimension Reduction Methods
Principal Components Regression
Partial Least Squares
Classification

Logistic Regression

The Logistic Model cost function

Estimating the Coefficients

Making Predictions

Odds Ratio

Performance Evaluation Matrices

[Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]

Multiple Logistic Regression

Logistic Regression for >2 Response Classes

Regularized Logistic Regression

Linear Discriminant Analysis

Using Bayes’ Theorem for Classification

Linear Discriminant Analysis for p=1

Linear Discriminant Analysis for p >1

Quadratic Discriminant Analysis

K-Nearest Neighbors

Classification with Non-linear Decision Boundaries

Support Vector Machines

Optimization Objective

The Maximal Margin Classifier

Kernels

One-Versus-One Classification

One-Versus-All Classification

Comparison of Classification Methods

Introduction to Deep Learning
ANN Structure

Biological neurons and artificial neurons

Non-linear Hypothesis

Model Representation

Examples & Intuitions

Transfer Function/ Activation Functions

Typical classes of network architectures

Feed forward ANN.

Structures of Multi-layer feed forward networks

Back propagation algorithm

Back propagation - training and convergence

Functional approximation with back propagation

Practical and design issues of back propagation learning

Deep Learning

Artificial Intelligence & Deep Learning

Softmax Regression

Self-Taught Learning

Deep Networks

Demos and Applications

Lab:
Getting Started with R

Introduction to R

Basic Commands & Libraries

Data Manipulation

Importing & Exporting data

Graphical and Numerical Summaries

Writing functions

Regression

Simple & Multiple Linear Regression

Interaction Terms

Non-linear Transformations

Dummy variable regression

Cross-Validation and the Bootstrap

Subset selection methods

Penalization [Ridge, Lasso, Elastic Net]

Classification

Logistic Regression, LDA, QDA, and KNN,

Resampling & Regularization

Support Vector Machine

Resampling & Regularization

Note:

For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.

Analysis of different data sets will be performed using R

主站蜘蛛池模板: 四虎影视永久免费视频观看 | 日本公与熄乱理在线播放370| 小东西几天没做怎么这么多水| 国产成人精品免费视频大全| 免费看黄色a级片| 久久久久无码国产精品不卡| 91chinesehomemadevideo| 精品国产三级a∨在线观看| 日韩高清伦理片中字在线观看| 在线a亚洲视频播放在线观看| 又大又硬又爽免费视频| 久久精品免费一区二区喷潮| 91女神疯狂娇喘3p之夜| 粗大的内捧猛烈进出小视频| 无码AV中文一区二区三区| 国产成人黄色小说| 亚洲六月丁香婷婷综合| 99爱视频99爱在线观看免费| 美女扒开大腿让男人桶| 日本最新免费二区三区| 国产福利在线观看你懂的| 亚洲欧美日韩在线观看看另类 | 欧美特黄一免在线观看| 女女女女BBBBBB毛片在线| 午夜阳光电影在线观看| 中文字幕精品亚洲无线码一区 | 成人免费看www网址入口| 国产亚州精品女人久久久久久| 九九热爱视频精品| 免费观看无遮挡www的小视频| 欧美日韩一区二区三区自拍 | 亚洲sss视频| 色吧首页dvd| 欧美xxxx做受欧美| 国产精品国产免费无码专区不卡| 亚洲毛片基地4455ww| 97精品国产97久久久久久免费 | www320999com| 狼人无码精华AV午夜精品| 女人扒开裤子让男人桶| 伊人网综合在线视频|