課程目錄:Natural Language Processing - AI/Robotics培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

        Natural Language Processing - AI/Robotics培訓(xùn)

 

 

Detailed training outline

Introduction to NLP
Understanding NLP
NLP Frameworks
Commercial applications of NLP
Scraping data from the web
Working with various APIs to retrieve text data
Working and storing text corpora saving content and relevant metadata
Advantages of using Python and NLTK crash course
Practical Understanding of a Corpus and Dataset
Why do we need a corpus?
Corpus Analysis
Types of data attributes
Different file formats for corpora
Preparing a dataset for NLP applications
Understanding the Structure of a Sentences
Components of NLP
Natural language understanding
Morphological analysis - stem, word, token, speech tags
Syntactic analysis
Semantic analysis
Handling ambigiuty
Text data preprocessing
Corpus- raw text
Sentence tokenization
Stemming for raw text
Lemmization of raw text
Stop word removal
Corpus-raw sentences
Word tokenization
Word lemmatization
Working with Term-Document/Document-Term matrices
Text tokenization into n-grams and sentences
Practical and customized preprocessing
Analyzing Text data
Basic feature of NLP
Parsers and parsing
POS tagging and taggers
Name entity recognition
N-grams
Bag of words
Statistical features of NLP
Concepts of Linear algebra for NLP
Probabilistic theory for NLP
TF-IDF
Vectorization
Encoders and Decoders
Normalization
Probabilistic Models
Advanced feature engineering and NLP
Basics of word2vec
Components of word2vec model
Logic of the word2vec model
Extension of the word2vec concept
Application of word2vec model
Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
Document Clustering, Classification and Topic Modeling
Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
Document classifcication using Na?ve Bayes and Maximum Entropy
Identifying Important Text Elements
Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
Topic modeling and information retrieval using Latent Semantic Analysis
Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
Positive vs. negative: degree of sentiment
Item Response Theory
Part of speech tagging and its application: finding people, places and organizations mentioned in text
Advanced topic modeling: Latent Dirichlet Allocation
Case studies
Mining unstructured user reviews
Sentiment classification and visualization of Product Review Data
Mining search logs for usage patterns
Text classification
Topic modelling

主站蜘蛛池模板: 国产偷自拍视频| 女人扒下裤让男人桶到爽| 四虎comwww最新地址| xxxx国产视频| 欧美精品videosex极品| 国产精品网址在线观看你懂的| 亚洲а∨精品天堂在线| 香港台湾日本三级纶理在线视| 成年性午夜免费视频网站不卡| 免费传媒网站免费| 2018天天操天天干| 日韩h片在线观看| 再深点灬舒服灬太大了添学长 | 成人精品一区二区三区中文字幕 | 污污视频在线观看黄| 国产激情一区二区三区| 久久久久久夜精品精品免费啦| 精品国产一二三产品价格| 在线精品日韩一区二区三区| 亚洲一级毛片免费看| 色噜噜狠狠狠色综合久| 在线视频免费国产成人| 九九电影院理论片| 精品无码国产一区二区三区51安| 国产麻豆一级在线观看| 久久夜色精品国产噜噜| 精品一区中文字幕| 国产精品99久久不卡| 中文字幕a∨在线乱码免费看| 激情久久av一区av二区av三区| 国产日韩欧美网站| 一区二区精品视频| 欧美va在线观看| 午夜无码国产理论在线| 69av免费观看| 放荡的女老板bd| 亚洲日韩国产成网在线观看| 被夫上司连续侵犯七天终于| 在线观看欧美国产| 久久国产午夜一区二区福利| 狠狠综合久久久久尤物丿|